

Simple Network Simulator (sim2net)

Simple Network Simulator (sim2net) is a discrete event simulator of
mobile ad hoc networks (MANETs) implemented in Python (version 2.7). The
simulator allows us to simulate networks of a given number of nodes that move
according to the selected mobility model, run custom applications, and
communicate only by sending application messages through wireless links.

Installation

There are two possibilities to install the sim2net simulator: with the use
of the pip installation tool, or from the source code obtained from GitHub [https://github.com/mkalewski/sim2net].

1. Using the pip installation tool

$ sudo pip install sim2net

2. Manually from the source code

Step 1. Clone the project:

$ git clone git@github.com:mkalewski/sim2net.git sim2net
$ cd sim2net

Step 2. Run install:

$ sudo python setup.py install

“Hello World” example

$ sim2net -i .
$ sim2net ./configuration.py ./application.py

Contents

	Command-line interface
	Synopsis

	Description

	sim2net.application.Application abstract class
	Default configuration

	Packages
	Package sim2net
	Module sim2net._version

	Module sim2net._time

	Module sim2net._channel

	Module sim2net._network

	Module sim2net.simulator

	Package sim2net.area
	Module sim2net.area._area

	Module sim2net.area.rectangle

	Module sim2net.area.square

	Package sim2net.failure
	Module sim2net.failure._failure

	Module sim2net.failure.crash

	Package sim2net.mobility
	Module sim2net.mobility._mobility

	Module sim2net.mobility.gauss_markov

	Module sim2net.mobility.nomadic_community

	Module sim2net.mobility.random_direction

	Module sim2net.mobility.random_waypont

	Package sim2net.packet_loss
	Module sim2net.packet_loss._packet_loss

	Module sim2net.packet_loss.gilbert_elliott

	Package sim2net.placement
	Module sim2net.placement._placement

	Module sim2net.placement.grid

	Module sim2net.placement.normal

	Module placement.uniform

	Package sim2net.propagation
	Module sim2net.propagation._propagation

	Module sim2net.propagation.path_loss

	Package sim2net.speed
	Module sim2net.speed._speed

	Module sim2net.speed.constant

	Module sim2net.speed.normal

	Module sim2net.speed.uniform

	Package sim2net.utility
	Module sim2net.utility.logger

	Module sim2net.utility.randomness

	Module sim2net.utility.validation

Indices and tables

	Index

	Module Index

	Search Page

Links

	Repository:	https://github.com/mkalewski/sim2net

	Bug reports:	https://github.com/mkalewski/sim2net/issues

	Documentation:	https://sim2net.readthedocs.org/en/latest/

Copyright

Copyright (c) 2012-2014 Michal Kalewski <mkalewski at cs.put.poznan.pl>

This program comes with ABSOLUTELY NO WARRANTY.

THIS IS FREE SOFTWARE, AND YOU ARE WELCOME TO REDISTRIBUTE IT UNDER THE TERMS

AND CONDITIONS OF THE MIT LICENSE. YOU SHOULD HAVE RECEIVED A COPY OF THE

LICENSE ALONG WITH THIS SOFTWARE; IF NOT, YOU CAN DOWNLOAD A COPY FROM

HTTP://WWW.OPENSOURCE.ORG.

Command-line interface

This package provides a command-line interface for the sim2net simulator,
which allows users to initialize and start simulations.

Synopsis

sim2net – a console script to initialize and start simulations:

sim2net [-h | -d | -v | -i DIRECTORY] CONFIGURATION APPLICATION

positional arguments:
 CONFIGURATION simulation configuration file
 APPLICATION simulation application file

optional arguments:
 -h, --help show this help message and exit
 -d, --description show description message and exit
 -i DIRECTORY, --initialize DIRECTORY
 write configuration and application files to given
 directory
 -v, --version show version message and exit

Description

To start a simulation with the sim2net simulator, two files are necessary:
a configuration file (with the simulator settings) and an application file that
is run by every node in the simulated network (the application must implement
the sim2net.application.Application abstract class). The easiest way to
obtain both files is to execute the sim2net command with the -i option,
eg.:

sim2net -i .

After that, two files are created in the given directory: configuration.py
and application.py. Both files may be edited – for more information about
configuration parameters see Packages
section, and for more information about application implementation see the
sim2net.application.Application abstract class.

Next, to start the simulation, the sim2net command should be executed with
both files as arguments, eg.:

sim2net ./configuration.py ./application.py

See also

Packages,
sim2net.application.Application

sim2net.application.Application abstract class

	
class sim2net.application.Application

	Bases: object

	
failure(time, shared)

	

	
finalize(shared)

	

	
initialize(node_id, shared)

	

	
main(time, communication, neighbors, shared)

	

Default configuration

test.

Packages

Simple Network Simulator (sim2net) – a discrete-event simulation of
mobile ad hoc networks (MANETs).

	Package sim2net
	Module sim2net._version

	Module sim2net._time

	Module sim2net._channel

	Module sim2net._network

	Module sim2net.simulator

	Package sim2net.area
	Module sim2net.area._area

	Module sim2net.area.rectangle

	Module sim2net.area.square

	Package sim2net.failure
	Module sim2net.failure._failure

	Module sim2net.failure.crash

	Package sim2net.mobility
	Module sim2net.mobility._mobility

	Module sim2net.mobility.gauss_markov

	Module sim2net.mobility.nomadic_community

	Module sim2net.mobility.random_direction

	Module sim2net.mobility.random_waypont

	Package sim2net.packet_loss
	Module sim2net.packet_loss._packet_loss

	Module sim2net.packet_loss.gilbert_elliott

	Package sim2net.placement
	Module sim2net.placement._placement

	Module sim2net.placement.grid

	Module sim2net.placement.normal

	Module placement.uniform

	Package sim2net.propagation
	Module sim2net.propagation._propagation

	Module sim2net.propagation.path_loss

	Package sim2net.speed
	Module sim2net.speed._speed

	Module sim2net.speed.constant

	Module sim2net.speed.normal

	Module sim2net.speed.uniform

	Package sim2net.utility
	Module sim2net.utility.logger

	Module sim2net.utility.randomness

	Module sim2net.utility.validation

Package sim2net

This package provides modules for the sim2net simulator.

The sim2net.simulator.Sim2Net class is the main entry point for
conducting simulations, and the sim2net.application.Application abstract
class defines the interface for simulation applications.

Package modules:

	Module sim2net._version

	Module sim2net._time

	Module sim2net._channel

	Module sim2net._network

	Module sim2net.simulator

Module sim2net._version

This package provides version information for the project.

The project’s version number has the following form: X.Y.Z, where:

	X – is a major version number,

	Y – is a minor version number,

	Z – is a maintenance version number.

Each number is increased by one at a time. When one of the numbers is
increased, the less significant numbers are reset to zero in the following
way:

	if there are backwards incompatible changes then the major number is
incremented and the minor and maintenance numbers are reset to zero;

	if there are new features (additions) implemented then the minor number
is incremented and the maintenance number is reset to zero;

	if there are only implementation detail changes or bug fixes then the
maintenance number is incremented (and there are no resets).

	
sim2net._version.get_version()

	Returns the current version number as a string.

	
sim2net._version.project_information()

	Returns the project information in the form of its name, short name, and
the current version number as a string.

Module sim2net._time

Supplies time-related functionality for simulations.

In this module the following terminology is used:

	Simulation step, \(s\):

	takes successive discrete values stating from 0 before each simulation
iteration.

	Simulation time, \(t_s\):

	keeps track of the current time for the system being simulated; it
advances to the next value in accordance with a given simulation
frequency before each simulation iteration.

	Simulation frequency, \(f_s\):

	a constant that describes the relationship between the simulation
step and the simulation time in the following manner:
\(t_s=\frac{s}{f_s}\).

	Simulation period, \(T_s\):

	a constant such that: \(T_s=\frac{1}{f_s}\).

	
class sim2net._time.Time

	Bases: object

This class provides time abstractions for simulations.

Class Time keeps track of simulation steps and time in accordance
with a given simulation frequency value.

Warning

The class must be set up by calling the setup() method.

	
setup(simulation_frequency=1)

	Initializes time abstractions for simulations.

	Parameters:

	
	simulation_frequency (int): a value of the
simulation frequency (greater than 0).

	Raises:

	
	ValueError: raised when a given value of the simulation
frequency is less or equal to 0.

Examples:

>>> clock = Time()
>>> clock.setup()
>>> clock.tick()
(0, 0.0)
>>> clock.tick()
(1, 1.0)
>>> clock.tick()
(2, 2.0)
>>> clock.simulation_period
1.0

>>> clock = Time()
>>> clock.setup(4)
>>> clock.tick()
(0, 0.0)
>>> clock.tick()
(1, 0.25)
>>> clock.tick()
(2, 0.5)
>>> clock.tick()
(3, 0.75)
>>> clock.tick()
(4, 1.0)
>>> clock.simulation_period
0.25

	
simulation_frequency

	(Property) The simulation frequency of type int.

	
simulation_period

	(Property) The simulation period of type float.

	
simulation_step

	(Property) The current simulation step value of type int.

	
simulation_time

	(Property) The current simulation time value of type float.

	
tick()

	Advances the simulation step and time values.

	Returns:

	A tuple of two values: the current simulation step (int) and the
current simulation time (float).

Note

The first call to this method will always returns (0, 0.0).

Module sim2net._channel

Provides an implementation of bidirectional communication channels for nodes in
the simulated network.

The channels transmit packets that transport application messages between
neighboring nodes. Each packet has its own identifier that is unique under
the same sender, and can be received only by these nodes that are neighbors of
the sender for the duration of the packet transmission according to the
wireless signal propagation model used (see: sim2net.propagation).
Potential packet losses are determined on the basis of the given model (see:
sim2net.packet_loss), and transmission time of each packet is uniformly
randomized in range \((0, t_{max}]\), where \(t_{max}\) is the given
maximum transmission time in the simulation time units (see:
sim2net._time).

	
class sim2net._channel.Channel(time, packet_loss, node_id, maximum_transmission_time)

	Bases: sim2net._channel._Output, sim2net._channel._Input

This class implements bidirectional communication channels for each node in
the simulated network.

The class has no members and inherits all its methods from two classes:
_Input and _Output.

Application message passing is implemented here as follows. First, a
message is sent locally by the _Output.send_message() method. Then,
it is transmitted in a packet to neighboring nodes by the
_Output.transmit_packets() method. If the transmission is
successful, the packet leaves the output channel by calling the
_Output.deliver_packet() method and will be transferred to receiving
nodes by calling the _Input.capture_packet() methods. Finally, the
message can be received by the application by calling the
_Input.receive_message() method.

	Parameters:

	
	time: a simulation time object of the
sim2net._time.Time class;

	packet_loss: an object representing the packet loss model
(see sim2net.packet_loss);

	node_id (int): an identifier of the node;

	maximum_transmission_time (float): maximum message
transmission time between neighboring nodes in the simulation
time units (see: sim2net._time).

	Raises:

	
	ValueError: raised when the given value of the time or
packet_loss parameter is None; or when the given value of the
node_id or maximum_transmission_time parameter is less than
zero.

	
class sim2net._channel._Input(node_id)

	Bases: object

This class implements input channels for nodes in the simulated network.

	Parameters:

	
	node_id (int): an identifier of the node for which the
input channel is created.

	
capture_packet(packet)

	Captures packets transmitted by neighboring nodes.

	Parameters:

	
	packet (tuple): a packet to capture represented by a tuple
that contains the packet’s identifier and transported application
message, which is also a tuple containing an identifier of the
sender and the message.

	
receive_message()

	Returns a received application message.

	Returns:

	None value if there is no message at the current simulation step,
or a tuple that contains an identifier of the sender and the
received application message.

	
class sim2net._channel._Output(time, packet_loss, node_id, maximum_transmission_time)

	Bases: object

This class implements output channels for nodes in the simulated network.

Note

Methods transmit_packets() and deliver_packet() are
responsible for the transmission and delivery of packages, so it is
presumed that these methods are called at each step of the simulation.

	Parameters:

	
	time: a simulation time object of the
sim2net._time.Time class;

	packet_loss: an object representing a packet loss model to
use (see sim2net.packet_loss);

	node_id (int): an identifier of the node for which the
output channel is created;

	maximum_transmission_time (float): maximum message
transmission time between neighboring nodes in the simulation
time units (see: sim2net._time).

	
_Output__get_transmission_neighbors(packet_id, transmission_time, neighbors)

	Returns a list of neighboring nodes at the beginning of packet
transmission.

	Parameters:

	
	packet_id (int): an identifier of the transmitted packet;

	transmission_time (float): scheduled start time of the
transmission;

	neighbors (list): a list of identifiers of all neighboring
nodes of the sender at the current simulation step.

	Returns:

	(list) a list of identifiers of neighboring nodes of the sender
for the given packet transmission or None value if the
transmission time has not yet begun.

	
deliver_packet()

	Delivers packets to neighboring nodes.

	Returns:

	None value if there is no packet to deliver at the current
simulation step, or a tuple that contains the packet to deliver.
In such a case, the tuple has the following data:

	an identifier of the packet to deliver of type int;

	a tuple that contains an identifier of the sender of
type int and the transported application message;

	a list of identifiers of nodes which receive the packet.

Hint

	It is possible that at one simulation step there will be multiple
packets to deliver, so this method should be called as long until
it returns None value.

	This method requires the use of complementary method
_Input.capture_packet() of input channels of all nodes
receiving the packet.

	
send_message(message, neighbors)

	Sends an application message.

	Parameters:

	
	message: the application message to send of any type;

	neighbors (list): a list of identifiers of all neighboring
nodes of the sender at the current simulation step.

	
transmit_packets(neighbors)

	Transmits packets to neighboring nodes.

	Parameters:

	
	neighbors (list): a list of identifiers of all neighboring
nodes of the sender at the current simulation step according to
the wireless signal propagation model used (see:
sim2net.propagation).

Module sim2net._network

This module provides an implementation of the mobile ad hoc network that is to
be simulated.

The network is composed of the given number of nodes running the provided
simulation application. The main method of this module, the
sim2net._network.Network.step() method, is called at each simulation step
and it advances the simulation by computing node failures, new positions of the
nodes, performing direct communication between neighboring nodes, and executing
the simulation application at each node.

Additionally, the sim2net._network._Communication class is
implemented, which serves as a communication interface for the simulated nodes.

	
class sim2net._network.Network(environment)

	Bases: object

This class implements the mobile ad hoc network that is to be simulated.

	Parameters:

	
	environment: a dictionary that contains objects, which form
the network environment for simulations (see
sim2net._network.Network.__ENVIRONMENT for the objects
list).

	
_Network__application()

	Executes the simulation application at each operative node at the
current simulation step.

See also

sim2net.application

	
_Network__communication()

	Performs packets propagation in the network at the current simulation
step.

See also

sim2net._channel.Channel

	
_Network__failure()

	Computes node failures at the current simulation step.

See also

sim2net.failure

	
_Network__move()

	Calculates new positions of the simulated nodes at the current
simulation step.

See also

sim2net.mobility

	
_Network__neighborhood()

	Calculates neighboring nodes at the current simulation step.

See also

sim2net.propagation

	
communication_receive(node_id)

	Receives an application message for the given node.

	Parameters:

	
	node_id (int): an identifier of the receiver.

	Returns:

	None value if there is no message at the current simulation step
for the receiver, or a tuple that contains an identifier of the
sender and the received application message.

See also

sim2net._network._Communication

	
communication_send(node_id, message)

	Sends an application message.

	Parameters:

	
	node_id (int): an identifier of the sender;

	message: the application message to send of any type.

Warning

This method uses the copy.deepcopy() function, and hence may
be slow.

See also

sim2net._network._Communication

	
finalize()

	Calls the sim2net.application.Application.finalize() finalization
method at each node after all simulation steps.

	
step()

	Advances the simulation by one simulation step. This method is called
as many times as there is simulation steps by the
sim2net.simulator.Sim2Net.run() method.

This method calls: sim2net._network.Network._Network__failure(),
sim2net._network.Network._Network__move(),
sim2net._network.Network._Network__neighborhood(),
sim2net._network.Network._Network__communication(),
sim2net._network.Network._Network__application(), and
sim2net._time.Time.tick() methods.

	
class sim2net._network._Communication(node_id, send_message, receive_message)

	Bases: object

This class implements a communication interface for the simulated nodes
providing two methods for sending and receiving application messages.

	Parameters:

	
	node_id (int): an identifier of the node;

	send_message: a sending method in the
sim2net._network.Network class;

	receive_message: a receiving method in the
sim2net._network.Network class.

	
receive()

	Returns None value if there is no message at the current simulation
step, or a tuple that contains an identifier of the sender and the
received application message.

	
send(message)

	Sends an application message.

	Parameters:

	
	message: the application message to send of any type.

Module sim2net.simulator

This module provides an interface to the simulator for the sim2net.cli
command-line tool and its main entry point for conducting simulations.

	
class sim2net.simulator.Sim2Net(configuration, application_file)

	Bases: object

This class is the main entry point for conducting simulations.

Based on the given simulation configuration and application file, the class
initializes and runs the simulation.

	
_Sim2Net__get_application_class(application_file)

	

	
_Sim2Net__get_arguments(name, configuration)

	

	
_Sim2Net__get_element(name, configuration, environment, number=None)

	

	
_Sim2Net__get_value(name, configuration)

	

	
_Sim2Net__report_error(element, name)

	

	
run()

	

Package sim2net.area

This package provides a collection of simulation area classes.

Area expresses a simulation surface by its shape and extent in the
two-dimensional space with the origin in (0, 0).

Package modules:

	Module sim2net.area._area

	Module sim2net.area.rectangle

	Module sim2net.area.square

See also

sim2net.placement

Module sim2net.area._area

Contains an abstract class that should be implemented by all simulation area
classes.

	
class sim2net.area._area.Area(name)

	Bases: object

This class is an abstract class that should be implemented by all
simulation area classes.

	Parameters:

	
	name (str): a name of the implemented simulation area.

	
ORIGIN = (0.0, 0.0)

	The origin for simulation areas.

	
get_area()

	Creates a dictionary that stores information about the simulation area.

	Returns:

	A dictionary containing the simulation area information.

	Raises:

	
	NotImplementedError: this method is an abstract method.

	
height

	(Property) A height of the simulation area of type float.

	Raises:

	
	NotImplementedError: this property is an abstract property.

	
logger

	(Property) A logger object of the logging.Logger class with
an appropriate channel name.

See also

sim2net.utility.logger

	
width

	(Property) A width of the simulation area of type float.

	Raises:

	
	NotImplementedError: this property is an abstract property.

	
within(horizontal_coordinate, vertical_coordinate)

	Tests whether the given coordinates are within the simulation area.

	Parameters:

	
	horizontal_coordinate (float): a horizontal (x-axis)
coordinate;

	vertical_coordinate (float): a vertical (y-axis)
coordinate.

	Returns:

	(bool) True if the given coordinates are within the simulation
area, or False otherwise.

	Raises:

	
	NotImplementedError: this method is an abstract method.

Module sim2net.area.rectangle

Provides an implementation of a rectangular simulation area in the
two-dimensional space.

	
class sim2net.area.rectangle.Rectangle(width, height)

	Bases: sim2net.area._area.Area

This class implements a rectangular simulation area of the given size in
the two-dimensional space with the origin in (0, 0).

	Parameters:

	
	width (float): a width of the rectangular simulation area
(along the horizontal x-axis),

	height (float): a height of the rectangular simulation area
(along the vertical y-axis).

	Raises:

	
	ValueError: raised when a given value of either width or
height parameter is equal to or less than 0.

	
get_area()

	Creates a dictionary that stores information about the simulation area.

	Returns:

	A dictionary that stores information about the simulation area;
it has the following fields:

	‘area name’: a name of the simulation area of type str,

	‘width’: a width of the simulation area of type float,

	‘height’: a height of the simulation area of type float.

	
height

	(Property) A height of the simulation area of type float.

	
width

	(Property) A width of the simulation area of type float.

	
within(horizontal_coordinate, vertical_coordinate)

	Tests whether the given coordinates are within the simulation area.

	Parameters:

	
	horizontal_coordinate (float): a horizontal (x-axis)
coordinate;

	vertical_coordinate (float): a vertical (y-axis)
coordinate.

	Returns:

	(bool) True if the given coordinates are within the rectangular
simulation area, or False otherwise.

Module sim2net.area.square

Provides an implementation of a square simulation area in the two-dimensional
space.

	
class sim2net.area.square.Square(side)

	Bases: sim2net.area.rectangle.Rectangle

This class implements a square simulation area of the given size in the
two-dimensional space with the origin in (0, 0).

	Parameters:

	
	side (float): a side length of the square simulation area.

Note

In this case, the sim2net.area.rectangle.Rectangle() method
is called with the width and height parameters set to the
value of the given side argument.

	
get_area()

	Creates a dictionary that stores information about the simulation area.

	Returns:

	A dictionary that stores information about the simulation area;
it has the following fields:

	‘area name’: a name of the simulation area of type str,

	‘side’: a side length of the square simulation area of type
float.

Package sim2net.failure

This package provides a collection of process failure models.

A process failure occurs whenever the process does not behave according to
its algorithm, and here the term process means the application running on
one of the nodes in the simulated network. To simulate such behaviors, process
failure models are used, and they differ in the nature and scope of faults.
Possible process failures may include ([CGR11]): crashes (where a process
at some time may simply stop to execute any steps and never recovers);
omissions (where a process does not send or receive messages that it is
supposed to send or receive according to its algorithm); crashes with
recoveries (where a process crashes and never recovers or it keeps
infinitely often crashing and recovering); eavesdropping (where a process
leaks information obtained in its algorithm to an outside entity); and
arbitrary (where a process may deviate in any conceivable way from its
algorithm).

	[CGR11]	(1, 2) Christian Cachin, Rachid Guerraoui, Luís Rodrigues. Introduction
to Reliable and Secure Distributed Programming, 2ed Edition.
Springer-Verlag, 2011.

Package modules:

	Module sim2net.failure._failure

	Module sim2net.failure.crash

Module sim2net.failure._failure

Contains an abstract class that should be implemented by all process failure
model classes.

	
class sim2net.failure._failure.Failure(name)

	Bases: object

This class is an abstract class that should be implemented by all process
failure model classes.

	Parameters:

	
	name (str): a name of the implemented process failure
model.

	
logger

	(Property) A logger object of the logging.Logger class with
an appropriate channel name.

See also

sim2net.utility.logger

	
node_failure(failures)

	Gives in place information about nodes which processes have failed
according to the implemented process failure model.

	Parameters:

	
	failures (list): a list of boolean values of the size equal
to the total number of nodes in the simulated network; True
value in position \(i\) indicates that the process on node
number \(i\) has failed.

	
random_generator

	(Property) An object representing the
sim2net.utility.randomness._Randomness pseudo-random number
generator.

Module sim2net.failure.crash

This module provides an implementation of the crash model.

In the crash model ([CGR11]), processes at some time may simply stop to
execute any steps, and if this is the case, the faulty processes never recover.
In this implementation, a failure for each process is determined randomly with
the use of the given crash probability that indicates the probability that a
process will crash during the total simulation time. By the method used, times
at which processes crash will be distributed uniformly in the total simulation
time. There is also a possibility to setup a transient period (at the
beginning of the simulation), during which process failures do not occur, and
the total number of faulty processes can also be limited to a given value.

	
class sim2net.failure.crash.Crash(time, nodes_number, crash_probability, maximum_crash_number, total_simulation_steps, transient_steps=0)

	Bases: sim2net.failure._failure.Failure

This class implements the process crash model.

Note

It is presumed that the node_failure() method is called at each
step of the simulation.

	Parameters:

	
	time: a simulation time object of the
sim2net._time.Time class;

	nodes_number (int): the total number of nodes in the
simulated network;

	crash_probability (float): the probability that a single
process will crash during the total simulation time;

	maximum_crash_number (int): the maximum number of faulty
processes;

	total_simulation_steps (int): the total number of
simulation steps;

	transient_steps (int): a number of steps at the beginning
of the simulation during which no crashes occur (default: 0).

	Raises:

	
	ValueError: raised when the given value of the time object
is None; or when the given number of nodes is less than or
equal to zero; or when the given crash probability is less than
zero or grater than one; or when the given value of the maximum
number of faulty processes or the given value of the total
simulation steps is less than zero; or when the number of steps
in the transient period is less than zero or greater than the
given value of the total simulation steps.

	
_Crash__crashes(nodes_number, crash_probability, maximum_crash_number, total_simulation_steps, transient_steps)

	Determines faulty processes and their times of crash with the use of
the given crash probability. There is also a possibility to setup a
transient period (at the beginning of the simulation), during which
process failures do not occur, and the total number of faulty processes
can also be limited to a given value.

	Parameters:

	
	nodes_number (int): the total number of nodes in the
simulated network;

	crash_probability (float): the probability that a single
process will crash during the total simulation time;

	maximum_crash_number (int): the maximum number of faulty
processes;

	total_simulation_steps (int): the total number of
simulation steps;

	transient_steps (int): a number of steps at the beginning
of the simulation during which no crashes occur (default: 0).

	Returns:

	A list of tuples; each tuple contains an identifier of the node
with faulty process and its time of crash (in simulation steps).
The list is sorted in ascending order by crash times.

	
node_failure(failures)

	Gives in place information about nodes which processes have failed
according to the crash model.

	Parameters:

	
	failures (list): a list of boolean values of the size equal
to the total number of nodes in the simulated network; True
value in position \(i\) indicates that the process on node
number \(i\) has failed.

	Returns“

	A list of nodes which processes failed at the current simulation
step.

Examples:

In order to avoid any process failures use this class with the
crash_probability and/or maximum_crash_number parameters set to
0, as in the examples below.

>>> clock = Time()
>>> clock.setup()
>>> crash = Crash(clock, 4, 0.0, 0, 2)
>>> failures = [False, False, False, False]
>>> clock.tick()
(0, 0.0)
>>> crash.node_failure(failures)
[]
>>> print failures
[False, False, False, False]
>>> clock.tick()
(1, 1.0)
>>> crash.node_failure(failures)
[]
>>> print failures
[False, False, False, False]

>>> clock = Time()
>>> clock.setup()
>>> crash = Crash(clock, 4, 1.0, 0, 2)
>>> failures = [False, False, False, False]
>>> clock.tick()
(0, 0.0)
>>> crash.node_failure(failures)
[]
>>> print failures
[False, False, False, False]
>>> clock.tick()
(1, 1.0)
>>> crash.node_failure(failures)
[]
>>> print failures
[False, False, False, False]

Package sim2net.mobility

This package provides a collection of mobility model classes.

Mobility models ([LNR04], [CBD02]) are designed to describe the movement
pattern of mobile nodes, and how their location, velocity and acceleration
change over time. Since mobility patterns may play a significant role in
determining the protocol performance, it is desirable for mobility models to
emulate the movement pattern of targeted real life applications in a reasonable
way.

The literature categorises mobility models as being either entity or group
models. Entity models are used as a tool to model the behaviour of individual
mobile nodes, treated as autonomous, independent entities. On the other hand,
the key assumption behind the group models is that individual nodes influence
each other’s movement to some degree. Therefore, group models have become
helpful in simulating the motion patterns of a group as a whole.

	[LNR04]	Guolong Lin, Guevara Noubir, Rajmohan Rajamaran. Mobility Models
for Ad-Hoc Network Simulation. In Proceedings of the 23rd Conference of
the IEEE Communications Society (INFOCOM 2004), pp. 463-473. Hong Kong,
March 2004.

	[CBD02]	(1, 2) Tracy Camp, Jeff Boleng, Vanessa Davies. A Survey of Mobility
Models for Ad-Hoc Network Research. In Wireless Communications Mobile
Computing. Special Issue on Mobile Ad Hoc Networking: Research, Trends and
Applications, vol. 2(5), 483–502. John Wiley & Sons, 2002.

Package modules:

	Module sim2net.mobility._mobility

	Module sim2net.mobility.gauss_markov

	Module sim2net.mobility.nomadic_community

	Module sim2net.mobility.random_direction

	Module sim2net.mobility.random_waypont

Module sim2net.mobility._mobility

Contains an abstract class that should be implemented by all mobility model
classes.

	
class sim2net.mobility._mobility.Mobility(name)

	Bases: object

This class is an abstract class that should be implemented by all mobility
model classes.

	Parameters:

	
	name (str): a name of the implemented mobility model.

	
get_current_position(node_id, node_speed, node_coordinates)

	Calculates and returns a node’s position at the current simulation step
in accordance with the implemented mobility model. It is assumed that
this method is called at each step of the simulation.

	Parameters:

	
	node_id (int): an identifier of the node;

	node_speed: an object representing the node’s speed;

	node_coordinates (list): values of the node’s horizontal
and vertical coordinates at the previous simulation step.

	Returns:

	A tuple containing current values of the node’s horizontal and
vertical coordinates.

	Raises:

	
	NotImplementedError: this method is an abstract method.

	
logger

	(Property) A logger object of the logging.Logger class with
an appropriate channel name.

See also

sim2net.utility.logger

	
random_generator

	(Property) An object representing the
sim2net.utility.randomness._Randomness pseudo-random number
generator.

Module sim2net.mobility.gauss_markov

This module provides an implementation of the Gauss-Markov mobility model.

In the Gauss-Markov mobility model ([LH99]), motion of a single node is
modelled in the form of a Gauss-Markov stochastic process. At the beginning,
each node is assigned with an initial speed and direction, as well as mean
values of these parameters. Then, at set intervals of time (e.g. simulation
steps), a new speed and direction are calculated for each node, which follow
the new course until the next time step. This is repeated through the duration
of the simulation. The new speed (\(v\)) and direction (\(d\)), at
time interval \(n\), are evaluated in the following manner:

	\(v_n=\alpha\times
v_{n-1}+(1-\alpha)\times\overline{v}+\sqrt{(1-\alpha^2)}\times v_x\),

	\(d_n=\alpha\times
d_{n-1}+(1-\alpha)\times\overline{d}+\sqrt{(1-\alpha^2)}\times d_x\);

where:

	\(0\leqslant\alpha\leqslant 1\) is a tuning parameter used to vary the
randomness;

	\(\overline{v}\) is constant representing the mean value of speed;

	\(\overline{d}\) is constant representing the mean value of
direction;

	\(v_x\) and \(d_x\) are random variables from a normal (Gaussian)
distribution.

Consequently, at time interval \(n\), node’s horizontal (\(x\)) and
vertical (\(y\)) coordinates in the simulation area are given by the
following equations:

	\(x_n=x_{n-1}+v_{n-1}\times\cos d_{n-1}\);

	\(y_n=y_{n-1}+v_{n-1}\times\sin d_{n-1}\).

It is worth to note that when \(\alpha\) is equal to \(1\), movement
becomes predictable, losing all randomness. On the other hand, if
\(\alpha\) is equal to \(0\), the model becomes memoryless: the new
speed and direction are based completely upon the mean speed and direction
constants (\(\overline{v}\) and \(\overline{d}\)) and the Gaussian
random variables (\(v_x\) and \(d_x\)).

	[LH99]	Ben Liang, Zygmunt J. Haas. Predictive Distance-Based Mobility
Management for PCS Networks. In Proceedings of the 18th Annual Joint
Conference of the IEEE Computer and Communications Societies (INFOCOM
1999), pp. 1377–1384, vol. 3. New York, NY, United States, March 1999.

	
class sim2net.mobility.gauss_markov.GaussMarkov(area, time, initial_coordinates, initial_speed, **kwargs)

	Bases: sim2net.mobility._mobility.Mobility

This class implements the Gauss-Markov mobility model, in which motion of
each node is modelled in the form of a Gauss-Markov stochastic process.

Note

	Due to the characteristics of this model, it is expected that each
node has assigned the normal speed distribution (see:
sim2net.speed.normal) – the speed is used as random variable
\(v_x\) when a new speed is calculated.

	All direction values used in this implementation are expressed in
radians.

	The get_current_position() method computes a position of a node
at the current simulation step (see: sim2net._time), so it
is presumed that the method is called at each step of the simulation.

	Parameters:

	
	area: an object representing the simulation area;

	time: a simulation time object of the
sim2net._time.Time class;

	initial_coordinates (list): initial coordinates of all
nodes; each element of this parameter should be a tuple of two
coordinates: horizontal and vertical (respectively) of type
float;

	initial_speed (float): a value of the initial speed that is
assigned to each node at the beginning of the simulation;

	kwargs (dict): a dictionary of (optional) keyword
parameters related to the Gauss-Markov mobility model; the
following parameters are accepted:

	alpha (float)

	The tuning parameter \(0\leqslant\alpha\leqslant 1\)
used to vary the randomness of movements (default: 0.75).

	direction_deviation (float)

	Constant representing the standard deviation of direction
random variable \(d_x\) (it defaults to
\(\frac{\pi}{2}\)).

	direction_margin (float)

	Constant used to change direction mean \(\overline{d}\)
to ensure that nodes do not remain near a border of the
simulation area for a long period of time (it defaults to
0.15, or 15% of the simulation area width/height, and
cannot be less than zero and greater than one; see:
_GaussMarkov__velocity_recalculation()).

	direction_mean (float)

	Constant representing mean value \(\overline{d}\) of
direction (it defaults to \(\frac{\pi}{6}\)). The same
value is used as mean of direction random variable
\(d_x\).

	recalculation_interval (int)

	Velocity (i.e. speed and direction) recalculation time
interval (it defaults to the simulation frequency; see:
sim2net._time). It determines how often, counting in
simulation steps, new values of velocity are recalculated.

	Raises:

	
	ValueError: raised when the given value of the area,
time, initial_coordinates or initial_speed parameter is
None; or when the given value of the keyword parameter alpha
is less than zero or greater that one; or when the given value of
the (optional) keyword parameter direction_margin is less than
zero or greater than one.

Example:

>>> gm = GaussMarkov(area, time, coordinates, 10.0, alpha=0.35)

	
_GaussMarkov__get_new_direction()

	Randomizes a new direction with the normal (Gaussian) distribution.

	Returns:

	(float) a newly randomized direction value.

	
_GaussMarkov__step_move(node_id, node_coordinates)

	Computes a node’s position at the current simulation step.

	Parameters:

	
	node_id (int): an identifier of the node;

	node_coordinates (list): values of the node’s horizontal
and vertical coordinates at the previous simulation step.

	Returns:

	(tuple) current values of the node’s horizontal and vertical
coordinates.

	
_GaussMarkov__velocity_recalculation(node_id, node_speed, node_coordinates)

	Recalculates a node’s velocity, i.e. its speed and direction, as a
Gauss-Markov stochastic process.

To ensure that a node does not remain near a border of the simulation
area for a long period of time, the node is forced away from the border
when it moves within certain distance of the edge. This is done by
modifying mean direction \(\overline{d}\). For example, when a
node is near the right border of the simulation area, the value of
\(\overline{d}\) changes to 180 degrees (\(\pi\)). The
distance that is used in this method is calculated as a product of the
direction margin and area width or height.

	Parameters:

	
	node_id (int): an identifier of the node;

	node_speed: an object representing the node’s speed;

	node_coordinates (list): values of the node’s horizontal
and vertical coordinates at the previous simulation step.

	
get_current_position(node_id, node_speed, node_coordinates)

	Calculates and returns a node’s position at the current simulation step
in accordance with the Gauss-Markov mobility model.

A distance of the route traveled by the node, between the current and
previous simulation steps, is calculated as the product of the current
node’s speed and the simulation period (see: sim2net._time
module). Therefore, it is assumed that this method is called at every
simulation step.

	Parameters:

	
	node_id (int): an identifier of the node;

	node_speed: an object representing the node’s speed;

	node_coordinates (list): values of the node’s horizontal
and vertical coordinates at the previous simulation step.

	Returns:

	A tuple containing current values of the node’s horizontal and
vertical coordinates.

Module sim2net.mobility.nomadic_community

This module provides an implementation of the Nomadic Community mobility model.

The Nomadic Community ([CBD02]) is a group mobility model, in which a group of
nodes collectively moves from one destination to another. Destinations for the
group are determined by the so-called reference point that is selected at
random within the simulation area. Moreover, each node uses an entity mobility
model to roam, within a fixed range, around the current reference point. But
when the reference point changes, all nodes travel to the new area defined by
new coordinates of the reference point (and its range of free roam) and then
begin roaming around it. The whole process is repeated again and again until
simulation ends.

	
class sim2net.mobility.nomadic_community.NomadicCommunity(area, time, initial_coordinates, pause_time=0.0, area_factor=0.25)

	Bases: sim2net.mobility.random_waypoint.RandomWaypoint, sim2net.mobility._mobility.Mobility

This class implements the Nomadic Community mobility model, in which a
group of nodes travels together from one location to another.

In this implementation, coordinates of the reference point are uniformly
selected at random within the simulation area once every \(x+y\times
pause_time\) simulation time units (see: sim2net._time module),
where \(x\) is uniformly picked at random from the range \([100,
200]\), and \(y\) from the range \([1, 10]\). Nodes roam around
reference points in accordance with the Random Waypoint mobility model
(see: sim2net.mobility.random_waypoint module). The width and
height of the (square or rectangular) free roam area around the reference
point are computed as a product of the area_factor parameter and the
width and height (respectively) of the simulation area.

Note

The get_current_position() method computes a position of a node
at the current simulation step (see: sim2net._time), so it is
presumed that the method is called at each step of the simulation.

	Parameters:

	
	area: an object representing the simulation area;

	time: a simulation time object of the
sim2net._time.Time class;

	initial_coordinates (list): initial coordinates of all
nodes; each element of this parameter should be a tuple of two
coordinates: horizontal and vertical (respectively) of type
float;

	pause_time (float): a maximum value of the pause time in
the simulation time units (default: 0.0, see also:
sim2net._time);

	area_factor (float): a factor used to determine the width
and height of the free roam area around the reference point
(default: 0.25).

	Raises:

	
	ValueError: raised when the given value of the area, time
or initial_coordinates parameter is None; or when the given
value of the pause_time parameter is less that zero; or when
the given value of the area_factor parameter is less than zero
or greater than one.

(At the beginning, nodes’ destination points are set to be equal to its
initial coordinates passed by the initial_coordinates parameter.)

	
_NomadicCommunity__get_free_roam_area_edges(reference_point)

	Computes boundaries of a free roam area around a given reference point.

	Parameter:

	
	reference_point (tuple) containing horizontal and vertical
coordinates (respectively) of the reference point.

	Returns:

	A tuple containing values of the top, right, bottom and left
boundaries (respectively) in the simulation area.

	
_NomadicCommunity__get_new_reference_point()

	Uniformly randomizes new coordinates of the reference point. The
vertical and horizontal coordinates are returned (respectively) as a
tuple.

	
_NomadicCommunity__get_new_relocation_time()

	Randomizes and returns a new relocation time of type float, after
which coordinates of the reference point will be changed.

	
_NomadicCommunity__reference_point_relocation()

	Relocates the reference point by picking its new coordinates. The
relocation takes place only if all nodes are within the current area of
free roam and the relocation time has expired. Otherwise, the current
coordinates of the reference point are preserved.

	
_get_new_destination()

	Uniformly randomizes a new waypoint within the range of free roam and
returns its coordinates as a tuple.

	
get_current_position(node_id, node_speed, node_coordinates)

	Calculates and returns a node’s position at the current simulation step
in accordance with the Nomadic Community mobility model (and Random
Waypoint model within the area of free roam).

A distance of the route traveled by the node, between the current and
previous simulation steps, is calculated as the product of the current
node’s speed and the simulation period (see: sim2net._time
module). Therefore, it is assumed that this method is called at every
simulation step.

	Parameters:

	
	node_id (int): an identifier of the node;

	node_speed: an object representing the node’s speed;

	node_coordinates (list): values of the node’s horizontal
and vertical coordinates at the previous simulation step.

	Returns:

	A tuple containing current values of the node’s horizontal and
vertical coordinates.

Module sim2net.mobility.random_direction

This module provides an implementation of the Random Direction mobility model.

At the beginning of the simulation, with the use of the Random Direction
mobility model ([RMM01]), a node first stops for some random pause time, and
then randomly selects a direction in which to move. The direction is
measured in degrees, and at first, the node selects a degree between 0 and 359.
Next, it finds a destination point on the boundary of the simulation area in
this direction of travel and moves with a constant, but randomly selected
(between the minimum and maximum values), speed to its destination. Once
it reaches the destination, it pauses, and then selects a new direction between
0 and 180 degree (the degree is limited because the node is already on the
boundary of the simulation area). The node then identifies the destination on
the boundary in this line of direction, selects a new speed, and resumes
travel. The whole process is repeated again and again until simulation ends.
The speed and destination of each node are chosen independently of other nodes.

	[RMM01]	Elizabeth M. Royer, P. Michael Melliar-Smithy, Louise E. Moser. An
Analysis of the Optimum Node Density for Ad Hoc Mobile Networks. In
Proceedings of the IEEE International Conference on Communications (ICC
2001), pp. 857–861, vol. 3. Helsinki, Finland, June 2001.

	
class sim2net.mobility.random_direction.RandomDirection(area, time, initial_coordinates, pause_time=0.0)

	Bases: sim2net.mobility.random_waypoint.RandomWaypoint, sim2net.mobility._mobility.Mobility

This class implements the Random Direction mobility model, in which each
node moves along straight lines from one destination point, on the boundary
of the simulation area, to another.

The nodes may also have pause times when they reach their destination
points, and their speeds are selected at random between the minimum and
maximum speed values. (All random picks are uniformly distributed).

Note

The get_current_position() method computes a position of a node
at the current simulation step (see: sim2net._time), so it is
presumed that the method is called at each step of the simulation.

See also

sim2net.mobility.random_waypoint

	Parameters:

	
	area: an object representing the simulation area;

	time: a simulation time object of the
sim2net._time.Time class;

	initial_coordinates (list): initial coordinates of all
nodes; each element of this parameter should be a tuple of two
coordinates: horizontal and vertical (respectively) of type
float;

	pause_time (float): a maximum value of the pause time in
the simulation time units (default: 0.0, see also:
sim2net._time).

	Raises:

	
	ValueError: raised when the given value of the area, time
or initial_coordinates parameter is None or when the given
value of the pause_time parameter is less that zero.

(At the beginning, nodes’ destination points are set to be equal to its
initial coordinates passed by the initial_coordinates parameter.)

	
_get_new_destination()

	Randomizes a new destination point on the boundary of the simulation
area and returns its coordinates as a tuple.

Module sim2net.mobility.random_waypont

This module provides an implementation of the Random Waypoint mobility model.

In this model ([JM96], [BMJ+98]), a node first stops for some random pause
time. Then, the node randomly picks a point within the simulation area and
starts moving toward it with a constant, but randomly selected, speed that is
uniformly distributed between the minimum and maximum speed values. Upon
reaching the destination point (or waypoint), the node pauses again and then
moves toward a newly randomized point. (If the pause time is equal to zero,
this leads to continuous mobility.) The whole process is repeated again and
again until simulation ends. The speed and destination of each node are chosen
independently of other nodes.

	[JM96]	David B. Johnson and David A. Maltz. Dynamic Source Routing in Ad
Hoc Wireless Networks. In Mobile Computing, edited by Tomasz Imielinski
and Hank Korth, chapter 5, pp. 153–181. Kluwer Academic Publishers, 1996.

	[BMJ+98]	Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, Jorjeta
Jetcheva. A Performance Comparison of Multi-hop Wireless Ad Hoc Network
Routing Protocols. In Proceedings of the 4th Annual ACM/IEEE International
Conference on Mobile Computing and Networking (MobiCom 1998), pp. 85–97.
Dallas, Texas, United States, October 1998.

	
class sim2net.mobility.random_waypoint.RandomWaypoint(area, time, initial_coordinates, pause_time=0.0)

	Bases: sim2net.mobility._mobility.Mobility

This class implements the Random Waypoint mobility model, in which each
node moves along straight lines from one waypoint to another.

The waypoints are randomly picked within the simulation area. The nodes
may also have pause times when they reach waypoints, and their speeds are
selected at random between the minimum and maximum speed values. (All
random picks are uniformly distributed).

Note

The get_current_position() method computes a position of a node
at the current simulation step (see: sim2net._time), so it is
presumed that the method is called at each step of the simulation.

	Parameters:

	
	area: an object representing the simulation area;

	time: a simulation time object of the
sim2net._time.Time class;

	initial_coordinates (list): initial coordinates of all
nodes; each element of this parameter should be a tuple of two
coordinates: horizontal and vertical (respectively) of type
float;

	pause_time (float): a maximum value of the pause time in
the simulation time units (default: 0.0, see also:
sim2net._time).

	Raises:

	
	ValueError: raised when the given value of the area, time
or initial_coordinates parameter is None or when the given
value of the pause_time parameter is less that zero.

(At the beginning, nodes’ destination points are set to be equal to its
initial coordinates passed by the initial_coordinates parameter.)

	
_assign_new_destination(node_id, node_speed)

	Assigns a new destination point for a node of a given ID and picks its
new speed value. (See also: _get_new_destination())

	Parameters:

	
	node_id (int): an identifier of the node;

	node_speed: an object representing the node’s speed.

	
_assign_new_pause_time(node_id)

	Assigns a new pause time for a node of a given ID and returns the
value. If the maximum pause time is set to 0, None value is
assigned and returned.

	Parameters:

	
	node_id (int): an identifier of the node.

	Returns:

	(float) a newly randomized pause time.

	
_diagonal_trajectory(node_id, node_coordinates, step_distance)

	Computes the current position of a node if its trajectory is not
parallel to the horizontal or vertical axis of the simulation area.
(See also: _parallel_trajectory().)

	Parameters:

	
	node_id (int): an identifier of the node;

	node_coordinates (list): values of the node’s horizontal
and vertical coordinates at the previous simulation step.

	step_distance (float): a distance that the node has moved
between the previous and current simulation step.

	Returns:

	(tuple) current values of the node’s horizontal and vertical
coordinates.

	
_get_new_destination()

	Randomizes a new waypoint and returns its coordinates as a tuple.

	
_get_new_pause_time()

	Randomizes a new pause time and returns its value of type float.

	
_parallel_trajectory(coordinate, destination, step_distance)

	Computes the current position of a node when one of its coordinates is
equal to the corresponding destination coordinate. In such a case, the
node moves on a straight line that is parallel to the horizontal or
vertical axis of the simulation area. (See also:
_diagonal_trajectory().)

	Parameters:

	
	coordinate (float): a value of the previous node’s
coordinate that is not equal to its corresponding destination
coordinate;

	destination (float): a value of the destination coordinate;

	step_distance (float): a distance that the node has moved
between the previous and current simulation steps.

	Returns:

	(float) a current value of the node’s coordinate.

	
_pause(node_id, node_coordinates)

	Decreases the current value of a node’s pause time and returns the
result of type float, or None if the pause time has expired.

	Parameters:

	
	node_id (int): an identifier of the node;

	node_coordinates (list): values of the node’s horizontal
and vertical coordinates at the previous simulation step.

	
_step_move(node_id, node_speed, node_coordinates)

	Computes a node’s position at the current simulation step. If its
trajectory is parallel to the horizontal or vertical axis of the
simulation area, the _steady_trajectory() method is used,
otherwise the _diagonal_trajectory() method is used.

	Parameters:

	
	node_id (int): an identifier of the node;

	node_speed: an object representing the node’s speed;

	node_coordinates (list): values of the node’s horizontal
and vertical coordinates at the previous simulation step.

	Returns:

	(tuple) current values of the node’s horizontal and vertical
coordinates.

	
get_current_position(node_id, node_speed, node_coordinates)

	Calculates and returns a node’s position at the current simulation step
in accordance with the Random Waypoint mobility model.

A distance of the route traveled by the node, between the current and
previous simulation steps, is calculated as the product of the current
node’s speed and the simulation period (see: sim2net._time
module). Therefore, it is assumed that this method is called at every
simulation step.

	Parameters:

	
	node_id (int): an identifier of the node;

	node_speed: an object representing the node’s speed;

	node_coordinates (list): values of the node’s horizontal
and vertical coordinates at the previous simulation step.

	Returns:

	A tuple containing current values of the node’s horizontal and
vertical coordinates.

Package sim2net.packet_loss

This package provides a collection of packet loss model classes.

Packet loss occurs when a packet of data (or message) traveling across a
computer network fails to reach its destination(s). In wireless communication,
the loss may be caused by wireless channel properties (e.g. signal degradation
due to multi-path fading or shadowing), packet collisions or faulty
networking hardware. Thus, the purpose of packet loss models is to simulate
(potential) transmission failures in wireless communication.

Package modules:

	Module sim2net.packet_loss._packet_loss

	Module sim2net.packet_loss.gilbert_elliott

See also

sim2net.propagation

Module sim2net.packet_loss._packet_loss

Contains an abstract class that should be implemented by all packet loss model
classes.

	
class sim2net.packet_loss._packet_loss.PacketLoss(name)

	Bases: object

This class is an abstract class that should be implemented by all packet
loss model classes.

	Parameters:

	
	name (str): a name of the implemented placement model.

	
logger

	(Property) A logger object of the logging.Logger class with
an appropriate channel name.

See also

sim2net.utility.logger

	
packet_loss()

	Returns information about whether a transmitted packet has been lost or
can be successfully received by destination nodes according to the
implemented packet loss model.

	Returns:

	(bool) True if the packet has been lost, or False otherwise.

	Raises:

	
	NotImplementedError: this method is an abstract method.

	
random_generator

	(Property) An object representing the
sim2net.utility.randomness._Randomness pseudo-random number
generator.

Module sim2net.packet_loss.gilbert_elliott

This module provides an implementation of the Gilbert-Elliott packet loss
model.

The Gilbert-Elliott model ([Gil60], [Ell63]) describes error patterns in
communication channels ([HH08]). The model is based on a simple Markov
chain with two states: G (for good or gap) and B (for bad or
burst). Each of them may generate errors (packet losses) as independent
events at a state dependent error rate: \(1-k\) in the good state and
\(1-h\) in the bad state. The chain is shown in the figure below along
with the transition matrix \(A\) that uses two transitions:
\(p=P(q_t=B|q_{t-1}=G)\) and \(r=P(q_t=G|q_{t-1}=B)\) (\(q_t\)
denotes the state at time \(t\)):

 +-------+ p +-------+ { }
 +----| |------------>| |<---+ { 1-p p }
1-p | | G | | B | | 1-r A = { }
 | | (1-k) | | (1-h) | | { r 1-r }
 +--->| |<------------| |----+ { }
 +-------+ r +-------+

Then, error rate \(p_E\) is obtained (in steady mode) for the model as
follows: \(p_E=(1-k)\times\frac{r}{p+r}+(1-h)\times\frac{p}{p+r}\)
(assuming: \(0<p,r<1\)).

It is worth to note that when \(q=1-p\) (and \(k=1, h=0\)), this model
reduces to the Bernoulli model – a very simple loss model, characterized by a
single parameter, the loss rate \(r\), used for modeling packet loss.

Finally, \(p\) equal to \(0\) means that no losses are possible,
whereas \(r\) equal to \(0\) means that no transmission is successful
(once the B state is reached).

	[Ell63]	E. O. Elliott. Estimates of Error Rates for Codes on Burst-Noise
Channels. In Bell System Technical Journal, vol. 42(5), 1977–1997. Bell
Laboratories, September 1963.

	[Gil60]	Edgar Nelson Gilbert. Capacity of a Burst-Noise Channel. In Bell
System Technical Journal, vol. 39(5), 1253–1265. Bell Laboratories,
September 1960.

	[HH08]	(1, 2) Gerhard Haßlinger, Oliver Hohlfeld. The Gilbert-Elliott Model for
Packet Loss in Real Time Services on the Internet. In Proceedings of the
14th GI/ITG Conference on Measurement, Modelling and Evaluation of Computer
and Communication Systems (MMB 2008), pp. 269–286. Dortmund, Germany,
April 2008.

	
class sim2net.packet_loss.gilbert_elliott.GilbertElliott(prhk=None)

	Bases: sim2net.packet_loss._packet_loss.PacketLoss

This class implements the Gilbert-Elliott packet loss model.

	Parameters:

	
	prhk (tuple): a tuple that contains four model
parameters: \(0\leqslant p,r,h,k\leqslant 1\), respectively
(each of type float). The parameters default to the following
values:

	\(p=0.00001333\),

	\(r=0.00601795\),

	\(h=0.55494900\),

	\(k=0.99999900\);

(which leads to error rate equal to \(0.098\%\) and the mean
packet loss rate equal to \(0.1\%\) ([HH08])).

	Raises:

	
	ValueError: raised when the given value any model parameter
is less than zero or greater that one.

(At the beginning the model is in the G state.)

	
packet_loss()

	Returns information about whether a transmitted packet has been lost or
can be successfully received by destination node(s) according to the
Gilbert-Elliott packet loss model.

	Returns:

	(bool) True if the packet has been lost, or False otherwise.

Package sim2net.placement

This package provides a collections of placement model classes.

A placement (or deployment) model describes a simulation area and a given
number of nodes deployed in the area. It provides also node positions in case
of static networks or initial node positions for mobile environments.

Package modules:

	Module sim2net.placement._placement

	Module sim2net.placement.grid

	Module sim2net.placement.normal

	Module placement.uniform

See also

sim2net.area

Module sim2net.placement._placement

Contains an abstract class that should be implemented by all placement classes.

	
class sim2net.placement._placement.Placement(name)

	Bases: object

This class is an abstract class that should be implemented by all placement
model classes.

	Parameters:

	
	name (str): a name of the implemented placement model.

	
get_placement()

	Generates placement positions and returns the result as a dictionary.

	Returns:

	A dictionary containing the placement information.

	Raises:

	
	NotImplementedError: this method is an abstract method.

	
logger

	(Property) A logger object of the logging.Logger class with
an appropriate channel name.

See also

sim2net.utility.logger

	
static position_conflict(horizontal_coordinates, vertical_coordinates, index=-1)

	If index is less than 0, checks whether the given coordinates are
unique, that is, if no two points have the same horizontal and vertical
coordinates. Otherwise, checks if there is a point that has the same
coordinates as these at the index position.

	Parameters:

	
	horizontal_coordinates (list): a list of horizontal
coordinates;

	vertical_coordinates (list): a list of vertical
coordinates;

	index (int): an index of the coordinate lists; if greater
than -1, it is checked whether there is a point with the same
horizontal and vertical coordinates as at index.

	Returns:

	(int) an index of the coordinate that is in conflict, or -1 if
the given coordinates are unique.

	Raises:

	
	ValueError: if given coordinate lists have different lengths,
or if a given value of the index parameter is greater than the
total number of coordinates.

Examples:

>>> Placement.position_conflict([1, 2, 2, 4], [5, 6, 6, 7])
2
>>> Placement.position_conflict([1, 2, 2, 4], [5, 6, 6, 7], 1)
2
>>> Placement.position_conflict([1, 2, 2, 4], [5, 6, 6, 7], 0)
-1

	
random_generator

	(Property) An object representing the
sim2net.utility.randomness._Randomness pseudo-random number
generator.

Module sim2net.placement.grid

Provides an implementation of the grid placement model.

In the grid placement model nodes are placed at intersections of a square or
rectangular grid. Usually, the grid has quadratic-shaped cells with edge
length that is close to the communication radius of a node. It creates
networks that are regular in shape and provides excellent connectivity at a
startup.

	
class sim2net.placement.grid.Grid(area, nodes_number, transmission_range)

	Bases: sim2net.placement._placement.Placement

This class implements the grid placement model, in which a given number of
nodes are placed at intersections of a square or rectangular grid within a
simulator area.

	Parameters:

	
	area: an object representing the simulation area;

	nodes_number (int): a number of nodes to place within the
simulation area;

	transmission_range (float): a value of the transmission (or
communication) radius of nodes, that is, the distance from a
transmitter at which the signal strength remains above the
minimum usable level.

	Raises:

	
	ValueError: raised when: the given number of nodes or
transmission range is less or equal to 0, or when the given value
of the area parameter is None.

	
_Grid__adjust_grid_dimensions(columns, rows)

	Adjusts the given grid dimensions to the size of the simulation area.
If the area shape is square and the grid shape is rectangular, the
longer side of the grid is placed along the horizontal x-axis of the
simulation area. If both shapes are rectangular, the longer side of
the grid is placed along the longer size of the simulation area.

	Parameters:

	
	columns (int): a number of grid columns;

	rows (int): a number of grid rows.

	Returns:

	A number of grid columns and rows as a tuple.

	
_Grid__get_grid_dimensions()

	Calculates dimensions of the grid based on the number of nodes. If the
number has a square root, the grid shape will be a square, otherwise it
will be a rectangular. In the worst case if the number of nodes is
prime, the number of rows (or columns) will be equal to one.

	Returns:

	A number of grid columns and rows as a tuple.

	
_Grid__get_horizontal_coordinates(columns, rows, distance)

	Generates horizontal coordinates of nodes based on the number of
columns, rows and the distance between nodes.

	Returns:

	A list of horizontal coordinates.

	
_Grid__get_nodes_distance(columns, rows)

	Calculates a distance between nodes in the same row and column based on
the their transmission ranges. The distance is also adjust to fit the
dimensions of the simulation area.

	Returns:

	A distance between nodes in the grid of type float.

	
_Grid__get_vertical_coordinates(columns, rows, distance)

	Generates vertical coordinates of nodes based on the number of
columns, rows and the distance between nodes.

	Returns:

	A list of vertical coordinates.

	
get_placement()

	Generates grid placement coordinates for the given number of nodes and
its transmission ranges and returns the result as a dictionary.

	Returns:

	A list of tuples of horizontal and vertical coordinates for each
host.

Module sim2net.placement.normal

Provides an implementation of the normal placement model.

In the normal placement model, a simulation area of a given size is chosen and
a given number of nodes are placed over it with the normal, i.e. Gaussian,
probability distribution.

	
class sim2net.placement.normal.Normal(area, nodes_number, standard_deviation=0.2)

	Bases: sim2net.placement._placement.Placement

This class implements the normal placement model, in which a given number
of nodes are placed over a simulation area with the normal probability
distribution.

	Parameters:

	
	area: an object representing the simulation area;

	nodes_number (int): a number of nodes to place over the
simulation area;

	standard_deviation (float): a value of the standard
deviation (default: 0.2).

	Raises:

	
	ValueError: raised when the number of nodes is less or equal
to 0, or when the given value of the area parameter is None.

	
get_placement()

	Generates normal (Gaussian) placement coordinates for the given number
of nodes and returns the result as a dictionary.

The means used here are computed as follows: \(\frac{1}{2}\times
area~width\) and \(\frac{1}{2}\times area~height\).

	Returns:

	A list of tuples of horizontal and vertical coordinates for each
host.

Module placement.uniform

Provides an implementation of the uniform placement model.

In the uniform placement model, a simulation area of a given size is chosen and
a given number of nodes are placed over it with the uniform probability
distribution.

	
class sim2net.placement.uniform.Uniform(area, nodes_number)

	Bases: sim2net.placement._placement.Placement

This class implements implements the uniform placement model, in which a
given number of nodes are placed over a simulation area with the uniform
probability distribution.

	Parameters:

	
	area: an object representing the simulation area;

	nodes_number (int): a number of nodes to place over the
simulation area.

	Raises:

	
	ValueError: raised when the number of nodes is less or equal
to 0, or when the given value of the area parameter is None.

	
get_placement()

	Generates uniform placement coordinates for the given number
of nodes and returns the result as a dictionary.

	Returns:

	A list of tuples of horizontal and vertical coordinates for each
host.

Package sim2net.propagation

This package provides a collection of wireless signal propagation model
classes.

A wireless transmission may be distorted by many effects such as free-space
loss, refraction, diffraction, reflection or absorption. Therefore, wireless
propagation models describe the influence of environment on signal quality
(mainly as a function of frequency, distance or other conditions) and calculate
the signal-to-noise ratio (SNR) at the receiver. Then, it is assumed
that if the SNR value is higher than some prescribed threshold, the signal can
be received, and the packet that is carried by the signal can be successfully
received if the receiving node remains connected in this way with the sending
node at least for the duration of that packet transmission.

Package modules:

	Module sim2net.propagation._propagation

	Module sim2net.propagation.path_loss

See also

sim2net.packet_loss

Module sim2net.propagation._propagation

Contains an abstract class that should be implemented by all wireless signal
propagation model classes.

	
class sim2net.propagation._propagation.Propagation(name)

	Bases: object

This class is an abstract class that should be implemented by all wireless
signal propagation model classes.

	Parameters:

	
	name (str): a name of the implemented placement model.

	
get_neighbors(coordinates)

	Calculates identifiers of all nodes in a network that would be able to
receive a wireless signal transmitted from a source node, according to
the implemented propagation model. All nodes in the network are
considered, one by one, as the source node.

	Parameters:

	
	coordinates (list): a list of coordinates of all nodes in
the simulated network at the current simulation step.

	Returns:

	A list that in position i is a list of all nodes that would
be able to receive a wireless signal transmitted by a node whose
identifier is equal to i.

	Raises:

	
	NotImplementedError: this method is an abstract method.

	
logger

	(Property) A logger object of the logging.Logger class with
an appropriate channel name.

See also

sim2net.utility.logger

	
random_generator

	(Property) An object representing the
sim2net.utility.randomness._Randomness pseudo-random number
generator.

Module sim2net.propagation.path_loss

This module provides an implementation of the simplified path loss model.

The path loss model predicts the reduction in attenuation (power density) a
signal encounters as it propagates through space. In this simplified
implementation, it is presumed that for all nodes that are within transmission
range of each other, the signal-to-noise ratio (SNR) is above the minimal
usable level, and hence, the nodes are able to communicate directly.

	
class sim2net.propagation.path_loss.PathLoss(transmission_range)

	Bases: sim2net.propagation._propagation.Propagation

This class implements simplified path loss model in which the
signal-to-noise ration is calculated on the given value of the transmission
range of nodes.

	Parameters:

	
	transmission_range (float): a value of the transmission (or
communication) radius of nodes, that is, the distance from a
transmitter at which the signal strength remains above the
minimum usable level.

	Raises:

	
	ValueError: raised when the given transmission range is less
or equal to 0.

	
_PathLoss__distance(source_coordinates, destination_coordinates)

	Calculates the distance between source and destination nodes in
Cartesian space.

	Parameters:

	
	source_coordinates (list): values of the source node’s
horizontal and vertical coordinates at the current simulation
step;

	destination_coordinates (list): values of the destination
node’s horizontal and vertical coordinates at the current
simulation step.

	Returns:

	The distance between source and destination nodes in Cartesian
space of type float.

	
get_neighbors(coordinates)

	Calculates identifiers of all nodes in a network that would be able to
receive a wireless signal transmitted from a source node, according to
the implemented propagation model. All nodes in the network are
considered, one by one, as the source node.

	Parameters:

	
	coordinates (list): a list of coordinates of all nodes in
the simulated network at the current simulation step.

	Returns:

	A list that in position i is a list of all nodes that would
be able to receive a wireless signal transmitted by a node whose
identifier is equal to i.

Examples:

>>> pathloss = PathLoss(1.0)
>>> coordinates = [[1.0, 2.0], [1.5, 2.5], [2.0, 3.0], [2.5, 3.5]]
>>> print pathloss.get_neighbors(coordinates)
[[1], [0, 2], [1, 3], [2]]
>>> coordinates = [[1.0, 2.0], [1.1, 2.1], [1.2, 2.2], [1.3, 2.3]]
>>> print pathloss.get_neighbors(coordinates)
[[1, 2, 3], [0, 2, 3], [0, 1, 3], [0, 1, 2]]

Package sim2net.speed

This package provides a collection of speed distribution classes.

Speed is a scalar quantity that describes the rate of change of a node position
in a simulation area (see: sim2net.area).

Note

In all speed distribution classes the quantity of speed should be
considered as simulation area units per one simulation time unit (see:
sim2net._time).

For example, the value of speed equal to \(5\) would mean five units
of simulation area per one unit of simulation time.

Package modules:

	Module sim2net.speed._speed

	Module sim2net.speed.constant

	Module sim2net.speed.normal

	Module sim2net.speed.uniform

See also

sim2net.placement, sim2net._time

Module sim2net.speed._speed

Contains an abstract class that should be implemented by all speed distribution
classes.

	
class sim2net.speed._speed.Speed(name)

	Bases: object

This class is an abstract class that should be implemented by all speed
distribution classes.

	Parameters:

	
	name (str): a name of the implemented speed distribution.

	
current

	(Property) A value of the current speed of type float.

	Raises:

	
	NotImplementedError: this property is an abstract property.

	
get_new()

	Assigns a new speed value.

	Returns:

	(float) a new speed value.

	Raises:

	
	NotImplementedError: this method is an abstract method.

	
logger

	(Property) A logger object of the logging.Logger class with
an appropriate channel name.

See also

sim2net.utility.logger

	
random_generator

	(Property) An object representing the
sim2net.utility.randomness._Randomness pseudo-random number
generator.

Module sim2net.speed.constant

Provides an implementation of a constant node speed. In this case a speed of a
node is constant at a given value.

	
class sim2net.speed.constant.Constant(speed)

	Bases: sim2net.speed._speed.Speed

This class implements a constant node speed fixed at a given value.

	Parameters:

	
	speed (float): a value of the node speed.

Example:

>>> speed = Constant(5.0)
>>> speed.current
5.0
>>> speed.get_new()
5.0
>>> speed = Constant(-5.0)
>>> speed.current
5.0
>>> speed.get_new()
5.0

	
current

	(Property) The absolute value of the current speed of type float.

	
get_new()

	Returns the absolute value of the given node speed of type float.

Module sim2net.speed.normal

Provides an implementation of the normal speed distribution. In this case a
speed of a node is assigned at random with the normal, i.e. Gaussian,
probability distribution.

	
class sim2net.speed.normal.Normal(mean=0.0, standard_deviation=0.2)

	Bases: sim2net.speed._speed.Speed

This class implements the normal speed distribution that assigns node’s
speeds with the Gaussian probability distribution.

(Defaults to standard normal distribution.)

	Parameters:

	
	mean (float): a value of the expectation (default: 0.0);

	standard_deviation (float): a value of the standard
deviation (default: 0.2).

	
current

	(Property) A value of the current speed of type float (or None
if the value has yet not been assigned).

	
get_new()

	Assigns a new speed value.

Warning

Depending on distribution parameters, negative values may be
randomly selected.

	Returns:

	(float) the absolute value of a new speed.

	
mean

	(Property) A value of the expectation of type float.

Module sim2net.speed.uniform

Provides an implementation of the uniform speed distribution. In this case a
speed of a node is assigned at random with the uniform probability
distribution.

	
class sim2net.speed.uniform.Uniform(minimal_speed, maximal_speed)

	Bases: sim2net.speed._speed.Speed

This class implements the uniform speed distribution that assigns node’s
speeds from a given range with equal probability.

	Parameters:

	
	minimal_speed (float): a value of a node’s minimal speed;

	maximal_speed (float): a value of a node’s maximal speed.

	
current

	(Property) A value of the current speed of type float (or None
if the value has yet not been assigned).

	
get_new()

	Assigns a new speed value.

Warning

Depending on distribution parameters, negative values may be
randomly selected.

	Returns:

	(float) the absolute value of a new speed.

Package sim2net.utility

This package contains miscellaneous utility modules and classes.

Package modules:

	Module sim2net.utility.logger

	Module sim2net.utility.randomness

	Module sim2net.utility.validation

Module sim2net.utility.logger

Provides functions which implement an event logging system with the use of the
logging module from the standard library.

	
class sim2net.utility.logger.Sim2NetFormatter(time=None)

	Bases: logging.Formatter

Implements a custom logging.Formatter that can also log
simulation steps and time (see: sim2net._time).

	Parameters:

	
	time: a simulation time object of the
sim2net._time.Time class to log simulation steps and
time.

	
format(record)

	Formats the specified record as text and adds the current simulations
step and time if the time object is present.

	
sim2net.utility.logger.__channel_string(channel)

	Returns a logging channel string for a given string.

	
sim2net.utility.logger.create_logger(time=None, level=None, handler=None, formatter=None)

	Creates and configures a logger for the main logging channel.

If no handler is passed, the
sim2net.utility.logger.Sim2NetFormatter formatter is used.

	Parameters:

	
	time: a simulation time object of the sim2net._time.Time
class to log simulation steps and time;

	level: a logging level that will be set to the logger (and its
handler if the handler is not passed as an argument); the level can
be passed as a string or a logging module’s level;

	handler: an object representing the handler to be used with the
logger (see logging.handlers in the standard library);

	formatter: an object representing the log format to be used with
the logger’s handler (see logging.Formatter class in the
standard library).

	Returns:

	A logging.Logger object for a newly created logger.

	
sim2net.utility.logger.get_logger(channel=None)

	Returns a logger object. Multiple calls to this function with the same
channel string will return the same object.

	Parameters:

	
	channel (str): a string that represents a logging channel.

	Returns:

	A logging.Logger object for the given logging channel or
the main channel logger if channel argument is None.

Examples:

>>> main_channel_logger = logger.create_logger()
>>> main_channel_logger = logger.get_logger()
>>> new_channel_logger = logger.get_logger('my_channel')

Module sim2net.utility.randomness

Provides a pseudo-random number generator.

	
class sim2net.utility.randomness._Randomness

	Bases: object

This class provides a pseudo-random number generator with the use of the
random module from the standard library that produces a sequence of
numbers that meet certain statistical requirements for randomness.

	
get_state()

	Returns an object capturing the current internal state of the
generator.

This object can be passed to set_state() to restore the state.

	
normal(mikro, sigma)

	Returns a random floating point number with the normal (i.e. Gaussian)
distribution.

	Parameters:

	
	mikro (float): a value of the mean to be used by the
generator;

	sigma (float): a value of the standard deviation to be used
by the generator.

	
random_order(sequence)

	Shuffles the given sequence in place.

	
set_state(generator_state)

	Sets a new internal state of the generator.

The state can be obtained from a call to get_state() method.

	Parameters:

	
	generator_state: an internal state of the generator to set.

	Raises:

	
	ValueError: raised when a given value of the
generator_state parameter is None.

	
uniform(begin, end)

	Returns a random floating point number \(N\) such that
\(begin\leqslant N\leqslant end\) for \(begin\leqslant end\)
and \(end\leqslant N\leqslant begin\) for \(end < begin\).

	
sim2net.utility.randomness.get_random_generator()

	Returns an object representing the _Randomness pseudo-random
number generator. Multiple calls to this function will return the same
object.

Module sim2net.utility.validation

Contains a collection of source code validation functions.

	
sim2net.utility.validation.check_argument_type(function, parameter, expected_type, argument, logger=None)

	Checks whether a given argument is of a given type and raises an exception
or reports a log message if the argument’s type is inappropriate.

Checks whether a value of the argument parameter is of the
expected_type type. If not, it raises an exception (if logger object
is None) or reports a log message (if logger object is passed)
indicating an inappropriate type of the parameter parameter in the
function function (or method).

	Parameters:

	
	function (str): a name of the function which argument is to be
checked;

	parameter (str): a name of the parameter which argument is to
be checked;

	expected_type: an expected type of the argument parameter;

	argument: a value of the argument that is to be checked;

	logger (logging.Logger): a logger object that will be used
to write the log message.

	Raises:

	
	TypeError: raised when the value of argument is not of the
expected_type type and logger object is not passed.

Example:

>>> check_argument_type('function_name', 'parameter_name', str, 'argument')

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 sim2net	
 This package contains modules for the sim2net simulator.

 	
 	
 sim2net._channel	
 This module supplies an implementation of communication channels
for nodes.

 	
 	
 sim2net._network	
 This module provides an implementation of the mobile ad hoc
network that is to be simulated.

 	
 	
 sim2net._time	
 This module supplies time-related functionality for simulations.

 	
 	
 sim2net._version	
 This module supplies version information for the project.

 	
 	
 sim2net.application	
 This module provides an abstract class that should be
implemented by simulation applicatins.

 	
 	
 sim2net.area	
 This package contains modules that implement simulation areas.

 	
 	
 sim2net.area._area	
 This module provides an abstract class that should be
implemented by all simulation area classes.

 	
 	
 sim2net.area.rectangle	
 This module provides an implementation of a rectangular
simulation area.

 	
 	
 sim2net.area.square	
 This module provides an implementation of a square simulation
area.

 	
 	
 sim2net.cli	
 This package contains a command-line interface for the sim2net
simulator, which allows users to initialize and start
simulations.

 	
 	
 sim2net.cli.cli	
 This module provides a command-line interface for the sim2net
simulator.

 	
 	
 sim2net.failure	
 This package contains modules that implement process failure
models.

 	
 	
 sim2net.failure._failure	
 This module provides an abstract class that should be
implemented by all process failure model classes.

 	
 	
 sim2net.failure.crash	
 This module provides an implementation of the crash model.

 	
 	
 sim2net.mobility	
 This package contains modules that implement mobility models.

 	
 	
 sim2net.mobility._mobility	
 This module provides an abstract class that should be
implemented by all mobility model classes.

 	
 	
 sim2net.mobility.gauss_markov	
 This module provides an implementation of the Gauss-Markov
mobility model.

 	
 	
 sim2net.mobility.nomadic_community	
 This module provides an implementation of the Nomadic Community
mobility model.

 	
 	
 sim2net.mobility.random_direction	
 This module provides an implementation of the Random Direction
mobility model.

 	
 	
 sim2net.mobility.random_waypoint	
 This module provides an implementation of the Random Waypoint
mobility model.

 	
 	
 sim2net.packet_loss	
 This package contains modules that implement packet loss models.

 	
 	
 sim2net.packet_loss._packet_loss	
 This module provides an abstract class that should be
implemented by all packet loss model classes.

 	
 	
 sim2net.packet_loss.gilbert_elliott	
 This module provides an implementation of the Gilbert-Elliott
packet loss model.

 	
 	
 sim2net.placement	
 This package contains modules that implement placement models.

 	
 	
 sim2net.placement._placement	
 This module provides an abstract class that should be
implemented by all placement model classes.

 	
 	
 sim2net.placement.grid	
 This module provides an implementation of the grid placement
model.

 	
 	
 sim2net.placement.normal	
 This module provides an implementation of the normal placement
model.

 	
 	
 sim2net.placement.uniform	
 This module provides an implementation of the uniform placement
model.

 	
 	
 sim2net.propagation	
 This package contains modules that implement wireless signal
propagation models.

 	
 	
 sim2net.propagation._propagation	
 This module provides an abstract class that should be
implemented by all propagation model classes.

 	
 	
 sim2net.propagation.path_loss	
 This module provides an implementation of the simplified path
loss propagation model.

 	
 	
 sim2net.simulator	
 This module provides an interface to the simulator for the
command-line tool.

 	
 	
 sim2net.speed	
 This package contains modules that implement speed models.

 	
 	
 sim2net.speed._speed	
 This module provides an abstract class that should be
implemented by all speed model classes.

 	
 	
 sim2net.speed.constant	
 This module provides an implementation a constant node speed.

 	
 	
 sim2net.speed.normal	
 This module provides an implementation of the normal speed
distribution.

 	
 	
 sim2net.speed.uniform	
 This module provides an implementation of the uniform speed
distribution.

 	
 	
 sim2net.utility	
 This package contains miscellaneous utility modules and classes.

 	
 	
 sim2net.utility.logger	
 This module provides functions which implement an event logging
system.

 	
 	
 sim2net.utility.randomness	
 This module provides a pseudo-random number generator.

 	
 	
 sim2net.utility.validation	
 This module provides a collection of source code validation
functions.

Index

 _
 | A
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

_

 	
 	__channel_string() (in module sim2net.utility.logger)

 	_assign_new_destination() (sim2net.mobility.random_waypoint.RandomWaypoint method)

 	_assign_new_pause_time() (sim2net.mobility.random_waypoint.RandomWaypoint method)

 	_Communication (class in sim2net._network)

 	_Crash__crashes() (sim2net.failure.crash.Crash method)

 	_diagonal_trajectory() (sim2net.mobility.random_waypoint.RandomWaypoint method)

 	_GaussMarkov__get_new_direction() (sim2net.mobility.gauss_markov.GaussMarkov method)

 	_GaussMarkov__step_move() (sim2net.mobility.gauss_markov.GaussMarkov method)

 	_GaussMarkov__velocity_recalculation() (sim2net.mobility.gauss_markov.GaussMarkov method)

 	_get_new_destination() (sim2net.mobility.nomadic_community.NomadicCommunity method)

 	(sim2net.mobility.random_direction.RandomDirection method)

 	(sim2net.mobility.random_waypoint.RandomWaypoint method)

 	_get_new_pause_time() (sim2net.mobility.random_waypoint.RandomWaypoint method)

 	_Grid__adjust_grid_dimensions() (sim2net.placement.grid.Grid method)

 	_Grid__get_grid_dimensions() (sim2net.placement.grid.Grid method)

 	_Grid__get_horizontal_coordinates() (sim2net.placement.grid.Grid method)

 	_Grid__get_nodes_distance() (sim2net.placement.grid.Grid method)

 	_Grid__get_vertical_coordinates() (sim2net.placement.grid.Grid method)

 	_Input (class in sim2net._channel)

 	_Network__application() (sim2net._network.Network method)

 	
 	_Network__communication() (sim2net._network.Network method)

 	_Network__failure() (sim2net._network.Network method)

 	_Network__move() (sim2net._network.Network method)

 	_Network__neighborhood() (sim2net._network.Network method)

 	_NomadicCommunity__get_free_roam_area_edges() (sim2net.mobility.nomadic_community.NomadicCommunity method)

 	_NomadicCommunity__get_new_reference_point() (sim2net.mobility.nomadic_community.NomadicCommunity method)

 	_NomadicCommunity__get_new_relocation_time() (sim2net.mobility.nomadic_community.NomadicCommunity method)

 	_NomadicCommunity__reference_point_relocation() (sim2net.mobility.nomadic_community.NomadicCommunity method)

 	_Output (class in sim2net._channel)

 	_Output__get_transmission_neighbors() (sim2net._channel._Output method)

 	_parallel_trajectory() (sim2net.mobility.random_waypoint.RandomWaypoint method)

 	_PathLoss__distance() (sim2net.propagation.path_loss.PathLoss method)

 	_pause() (sim2net.mobility.random_waypoint.RandomWaypoint method)

 	_Randomness (class in sim2net.utility.randomness)

 	_Sim2Net__get_application_class() (sim2net.simulator.Sim2Net method)

 	_Sim2Net__get_arguments() (sim2net.simulator.Sim2Net method)

 	_Sim2Net__get_element() (sim2net.simulator.Sim2Net method)

 	_Sim2Net__get_value() (sim2net.simulator.Sim2Net method)

 	_Sim2Net__report_error() (sim2net.simulator.Sim2Net method)

 	_step_move() (sim2net.mobility.random_waypoint.RandomWaypoint method)

A

 	
 	Application (class in sim2net.application)

 	
 	Area (class in sim2net.area._area)

C

 	
 	capture_packet() (sim2net._channel._Input method)

 	Channel (class in sim2net._channel)

 	check_argument_type() (in module sim2net.utility.validation)

 	communication_receive() (sim2net._network.Network method)

 	communication_send() (sim2net._network.Network method)

 	Constant (class in sim2net.speed.constant)

 	
 	Crash (class in sim2net.failure.crash)

 	create_logger() (in module sim2net.utility.logger)

 	current (sim2net.speed._speed.Speed attribute)

 	(sim2net.speed.constant.Constant attribute)

 	(sim2net.speed.normal.Normal attribute)

 	(sim2net.speed.uniform.Uniform attribute)

D

 	
 	deliver_packet() (sim2net._channel._Output method)

F

 	
 	Failure (class in sim2net.failure._failure)

 	failure() (sim2net.application.Application method)

 	
 	finalize() (sim2net._network.Network method)

 	(sim2net.application.Application method)

 	format() (sim2net.utility.logger.Sim2NetFormatter method)

G

 	
 	GaussMarkov (class in sim2net.mobility.gauss_markov)

 	get_area() (sim2net.area._area.Area method)

 	(sim2net.area.rectangle.Rectangle method)

 	(sim2net.area.square.Square method)

 	get_current_position() (sim2net.mobility._mobility.Mobility method)

 	(sim2net.mobility.gauss_markov.GaussMarkov method)

 	(sim2net.mobility.nomadic_community.NomadicCommunity method)

 	(sim2net.mobility.random_waypoint.RandomWaypoint method)

 	get_logger() (in module sim2net.utility.logger)

 	get_neighbors() (sim2net.propagation._propagation.Propagation method)

 	(sim2net.propagation.path_loss.PathLoss method)

 	get_new() (sim2net.speed._speed.Speed method)

 	(sim2net.speed.constant.Constant method)

 	(sim2net.speed.normal.Normal method)

 	(sim2net.speed.uniform.Uniform method)

 	
 	get_placement() (sim2net.placement._placement.Placement method)

 	(sim2net.placement.grid.Grid method)

 	(sim2net.placement.normal.Normal method)

 	(sim2net.placement.uniform.Uniform method)

 	get_random_generator() (in module sim2net.utility.randomness)

 	get_state() (sim2net.utility.randomness._Randomness method)

 	get_version() (in module sim2net._version)

 	GilbertElliott (class in sim2net.packet_loss.gilbert_elliott)

 	Grid (class in sim2net.placement.grid)

H

 	
 	height (sim2net.area._area.Area attribute)

 	(sim2net.area.rectangle.Rectangle attribute)

I

 	
 	initialize() (sim2net.application.Application method)

L

 	
 	logger (sim2net.area._area.Area attribute)

 	(sim2net.failure._failure.Failure attribute)

 	(sim2net.mobility._mobility.Mobility attribute)

 	(sim2net.packet_loss._packet_loss.PacketLoss attribute)

 	(sim2net.placement._placement.Placement attribute)

 	(sim2net.propagation._propagation.Propagation attribute)

 	(sim2net.speed._speed.Speed attribute)

M

 	
 	main() (sim2net.application.Application method)

 	
 	mean (sim2net.speed.normal.Normal attribute)

 	Mobility (class in sim2net.mobility._mobility)

N

 	
 	Network (class in sim2net._network)

 	node_failure() (sim2net.failure._failure.Failure method)

 	(sim2net.failure.crash.Crash method)

 	
 	NomadicCommunity (class in sim2net.mobility.nomadic_community)

 	Normal (class in sim2net.placement.normal)

 	(class in sim2net.speed.normal)

 	normal() (sim2net.utility.randomness._Randomness method)

O

 	
 	ORIGIN (sim2net.area._area.Area attribute)

P

 	
 	packet_loss() (sim2net.packet_loss._packet_loss.PacketLoss method)

 	(sim2net.packet_loss.gilbert_elliott.GilbertElliott method)

 	PacketLoss (class in sim2net.packet_loss._packet_loss)

 	PathLoss (class in sim2net.propagation.path_loss)

 	
 	Placement (class in sim2net.placement._placement)

 	position_conflict() (sim2net.placement._placement.Placement static method)

 	project_information() (in module sim2net._version)

 	Propagation (class in sim2net.propagation._propagation)

R

 	
 	random_generator (sim2net.failure._failure.Failure attribute)

 	(sim2net.mobility._mobility.Mobility attribute)

 	(sim2net.packet_loss._packet_loss.PacketLoss attribute)

 	(sim2net.placement._placement.Placement attribute)

 	(sim2net.propagation._propagation.Propagation attribute)

 	(sim2net.speed._speed.Speed attribute)

 	
 	random_order() (sim2net.utility.randomness._Randomness method)

 	RandomDirection (class in sim2net.mobility.random_direction)

 	RandomWaypoint (class in sim2net.mobility.random_waypoint)

 	receive() (sim2net._network._Communication method)

 	receive_message() (sim2net._channel._Input method)

 	Rectangle (class in sim2net.area.rectangle)

 	run() (sim2net.simulator.Sim2Net method)

S

 	
 	send() (sim2net._network._Communication method)

 	send_message() (sim2net._channel._Output method)

 	set_state() (sim2net.utility.randomness._Randomness method)

 	setup() (sim2net._time.Time method)

 	Sim2Net (class in sim2net.simulator)

 	sim2net (module)

 	sim2net._channel (module)

 	sim2net._network (module)

 	sim2net._time (module)

 	sim2net._version (module)

 	sim2net.application (module)

 	sim2net.area (module)

 	sim2net.area._area (module)

 	sim2net.area.rectangle (module)

 	sim2net.area.square (module)

 	sim2net.cli (module)

 	sim2net.cli.cli (module)

 	sim2net.failure (module)

 	sim2net.failure._failure (module)

 	sim2net.failure.crash (module)

 	sim2net.mobility (module)

 	sim2net.mobility._mobility (module)

 	sim2net.mobility.gauss_markov (module)

 	sim2net.mobility.nomadic_community (module)

 	sim2net.mobility.random_direction (module)

 	sim2net.mobility.random_waypoint (module)

 	sim2net.packet_loss (module)

 	
 	sim2net.packet_loss._packet_loss (module)

 	sim2net.packet_loss.gilbert_elliott (module)

 	sim2net.placement (module)

 	sim2net.placement._placement (module)

 	sim2net.placement.grid (module)

 	sim2net.placement.normal (module)

 	sim2net.placement.uniform (module)

 	sim2net.propagation (module)

 	sim2net.propagation._propagation (module)

 	sim2net.propagation.path_loss (module)

 	sim2net.simulator (module)

 	sim2net.speed (module)

 	sim2net.speed._speed (module)

 	sim2net.speed.constant (module)

 	sim2net.speed.normal (module)

 	sim2net.speed.uniform (module)

 	sim2net.utility (module)

 	sim2net.utility.logger (module)

 	sim2net.utility.randomness (module)

 	sim2net.utility.validation (module)

 	Sim2NetFormatter (class in sim2net.utility.logger)

 	simulation_frequency (sim2net._time.Time attribute)

 	simulation_period (sim2net._time.Time attribute)

 	simulation_step (sim2net._time.Time attribute)

 	simulation_time (sim2net._time.Time attribute)

 	Speed (class in sim2net.speed._speed)

 	Square (class in sim2net.area.square)

 	step() (sim2net._network.Network method)

T

 	
 	tick() (sim2net._time.Time method)

 	
 	Time (class in sim2net._time)

 	transmit_packets() (sim2net._channel._Output method)

U

 	
 	Uniform (class in sim2net.placement.uniform)

 	(class in sim2net.speed.uniform)

 	
 	uniform() (sim2net.utility.randomness._Randomness method)

W

 	
 	width (sim2net.area._area.Area attribute)

 	(sim2net.area.rectangle.Rectangle attribute)

 	
 	within() (sim2net.area._area.Area method)

 	(sim2net.area.rectangle.Rectangle method)

 _static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		Simple Network Simulator (sim2net)

 		Command-line interface

 		Synopsis

 		Description

 		sim2net.application.Application abstract class

 		Default configuration

 		Packages

 		Package sim2net

 		Module sim2net._version

 		Module sim2net._time

 		Module sim2net._channel

 		Module sim2net._network

 		Module sim2net.simulator

 		Package sim2net.area

 		Module sim2net.area._area

 		Module sim2net.area.rectangle

 		Module sim2net.area.square

 		Package sim2net.failure

 		Module sim2net.failure._failure

 		Module sim2net.failure.crash

 		Package sim2net.mobility

 		Module sim2net.mobility._mobility

 		Module sim2net.mobility.gauss_markov

 		Module sim2net.mobility.nomadic_community

 		Module sim2net.mobility.random_direction

 		Module sim2net.mobility.random_waypont

 		Package sim2net.packet_loss

 		Module sim2net.packet_loss._packet_loss

 		Module sim2net.packet_loss.gilbert_elliott

 		Package sim2net.placement

 		Module sim2net.placement._placement

 		Module sim2net.placement.grid

 		Module sim2net.placement.normal

 		Module placement.uniform

 		Package sim2net.propagation

 		Module sim2net.propagation._propagation

 		Module sim2net.propagation.path_loss

 		Package sim2net.speed

 		Module sim2net.speed._speed

 		Module sim2net.speed.constant

 		Module sim2net.speed.normal

 		Module sim2net.speed.uniform

 		Package sim2net.utility

 		Module sim2net.utility.logger

 		Module sim2net.utility.randomness

 		Module sim2net.utility.validation

